

信州大学物理会総会

TLO&ユビキタス・コンピューティングと信州

大学と産業界の橋渡し

産学間の技術移転の話

2004.05.22

株式会社リクルート テクノロジーマネジメント開発室 原 豊

なぜリクルートが技術移転??

Recruit Co., Ltd.

- 情報誌の出版社
 - 就職、学び、住宅、車、旅行、結婚、・・・
 - 情報誌からWebへ (ISIZE、リクルートナビ)
 - 情報提供者とユーザーをつなぐ
- 学生向けの就職情報誌が原点
 - 大学と企業をつないできた = 「人材の適材適所」

技術移転事業

大学と企業をつなぐ=「技術の適材適所」

Business

ゴール: LIAISON (産学間の橋渡し)

機能: AGENT (研究者・大学に軸足)

マーケティング、ライセンス、フォロー

産学連携チャネル

学生の就職 コンサルティング / 技術指導 研究生·研究員受入 大学 共同研究 産業界 受託研究 研究 学内研究会 所 論文/学会発表 技術移転・ライセンシング 起業

技術移転のモデル

大学TLOと連携 個々の研究者 紹介・直接問い合わせ 権利化アウトソース 弁理士 資料の準備 ライフルショットマーケティング ・企業の選択 ・ネットワークの活用

最初にお金の話!

遺伝子組み換え技術 Recombinant DNA

発明者: S. Cohen & H. Boyer

遺伝子組み換え技術 総収入は300億円!!

最終製品: 人インスリン、ワクチンなど

原材料: 甘味料など.

バイオツール: DNAキメラ、ベクターなど.

数百社の企業にライセンス 大学に2.5億ドルのライセンス収入をもたらした

「実は私もこれで命拾いした一人です。・・・ コーエンボイヤー特許以前では死んでいたかも知れません。たとえ生きていても,その点滴に何万円,或いは何十万円かかったことやら...」

遺伝子組み換え技術 発明者は?

- S. Cohen スタンフォード大·共同発明者 学会発表 1973年11月
 - 大学に発明の開示書類を提出せず。
 - TLOがコンタクト 特許にはかかわりたくない
 - 特許出願は期限1週間前(発表から1年ぎりぎり)
 - 当時の生化学系研究者の認識

産業界との関わりは危険

国立大学法人化

- 国立大学法人への移行と産学連携との関係
 - 法人格の取得
 - ・ 特許等の権利義務を各機関(大学)に帰属させることが可能
 - 非公務員型
 - 教職員の採用・給与・兼業等を自主的に設定
 - 研究成果の活用の促進を業務として位置づけ
 - 主体的に技術移転やインキュベーションを行うことが期待される
 - 国立大学法人からの出資
 - 研究成果の活用を促進する事業者への出資が業務として規定
 - 特許料等の経過措置
 - 特許料は原則3年間は1/2に減額

TLOのポテンシャル

(AUTM Licensing Survey: FY1999)

TLOを通じて、大学が多額の収益を市場から獲得

いい話ばかりではない!

TLOの事業構造ーUCの場合

さて、当初想定していた営業イメージとは。。。

大学の技術は簡単にライセンスできる きっと企業側からも待ち望まれているはずだ

しかし、実際に候補となる企業へ赴き、 預かった案件を営業してみると...

これは凸大学の凹先生による、最先端の技術で、ぜひ御社に。。。

これは凸大学の凹先生による、最先端の技術で、ぜひ御社に。。。

うーん…こんな 段階ではちょっとねぇ …実用化も20年先で やっとこでしょう…

ウチでも似たような ことやってるからね。 だいたい大学なん ていうのはさぁ...

大学発の技術

基礎的・アカデミック

革新的になりうる

実用化まで遠い

な研究

大学はオープン

機密性を保ちに〈い 競合企業にもオープン

・これだと学生が卒業できない。・そんなに沢山作るお金はないよ

大学では"応用開発" をしづらい

誰かがリスクを負う 金不足、人不足 ·えっ、これしゃべったらまずかった!? ·来週学会で発表 するんだけど。。。

大学発の技術

·これは世の中変 えるかも。でも20 <u>年後かな?</u>

- ·これで特許になる の!?
- ・俺は×本特許を出 している

大学自ら実施しない 特許が意識されない 特許にこだわりすぎる

必要なことは...

「産学間の技術のギャップを埋めること」

いくらでもケチが つけられる状態 誰かに進める気になっていただく。 その人が進めやすくする。

ところで、そもそも特許とは?

> 特許の意味

技術を世の役に立てる(公開される) 発明・創意工夫をした人を守る(期間限定で独占を許す) 特許成立の条件(新規性、進歩性、産業上の利用性) 誰もやっていない、簡単には思いつかない、役に立つ

> 研究価値と特許性・市場性

研究上の高い評価 特許性・市場性 特許になること(特許性) 役に立つこと、売れること(市場性) 市場性>>特許性 利用されない特許は意味がない(特許にはお金がかかる)

➢何のために特許にするのか?

企業にとって 製品・事業を守る ツール (出願することにも一応の意味はあり) 大学にとって 研究成果を実用化につなげるためのツール (出願するだけでは何の意味もない!)

例えばこんな話が進んでいる

事例. 立体周期表

ケース:京都大学 物理学科

- 周期表を立体にした文房具入れ
 - 従来の長周期表では表現できなかった元素の性質も表現可能に
 - 意匠と商標による権利化
- ・ 発明者主導の製品化
 - 発明者自ら製品の設計に
 - 発明者自ら資金拠出
- それぞれのメリット
 - 製造業者のリスク低減
 - 発明者の望んだ製品が社会に

事例: ポリロタキサン

大阪大学 高分子科学

北陸先端科学技術大学

しなやかな多価リガンド 検査ツール、HPLC・・・・

東京大学新領域·物質系

「環動」ゲル:高強度・高弾性・高均質医療材料、吸水材・・・・

事例. 木材リサイクル技術 三重大学

• 技術の内容

- 木の主要成分であるリグニンをリグノフェノールという機能性新素材に変換し、古紙 とあわせることにより、自由な形状の木材様材料に再生することができる技術。

• GAPを埋めるために

- A. 工業化ステップの検討·開発のために研究会を組織(会員企業は40社増加)。
- B. リグノフェノール製造の実証プラントを建設中。また、リグノフェノールと古紙から木材様材料を作成する実験も終了。

• 現在の状況

- 実証プラントは03年冬に稼動予定
- 数年後にリグノフェノール成形体を製品として 出荷予定

事例. スカイライトバイオテック社

秋田県立大学 遺伝子発現データ解析技術

- 遺伝子発現データ標準化手法の発見
 - バックグラウンドの最適な除去方法
 - 微細シグナルの検出とデータ信頼域の算出
 - 定量化によりデータの互換性を生む
- この技術を基盤に大学発VB(SLB社)の設立を支援

東京医科歯科大学 リポタンパク解析技術

- HPLCを利用したリポタンパク解析アルゴリズムの発見
 - 動脈硬化、高脂血症の診断、研究に有効
 - 一 微量検体から多くの情報を正確に得ることが可能
 - トランスジェニックマウスの形質プロファイル
- SLB社の戦術と合致するためライセンス
 - 短期間で事業化、アカデミア中心に多くの 顧客開拓に成功している

University Network

発明者の所属大学(国内)は現在37大学

*その他、個人の発明、旧国立研究機関、海外の大学、国内外ベンチャー企業の発明についても実績があり

首都圏と地方

おまけ

Technology Fields

成功するためのカギ

- いい技術・研究成果があること
- ・ 発明者 / 権利者に移転の意思があること その意義も難しさも感じていること
- 発明者/権利者にエージェントが信頼されること
- 発明者が協力できること
- 開発リスクを負える誰かがいること
- 受入れ側に推進者がいること
- 受入れ側の経営のサポートがあること
- エージェントが機能すること ネットワークとノウハウを持ち、スピーディに動くこと
- エージェントが"思い"をもっていること ロマン、ソロバン
- 運・縁・タイミングがそろうこと

結局のところ

by Niels Reimers

- 1. Marketing
- 2. Marketing
- 3. Marketing

And...

You have to be lucky!

ありがとうございました。

株式会社リクルート テクノロジーマネジメント開発室

TEL: 03-3575-5586

FAX: 03-3575-6580

Home Page: http://www.recruit.co.jp/tmd

emails: <u>yhara@r.recruit.co.jp</u> (原)

<u>kiutaka@r.recruit.co.jp</u> (木内)